Augmenting trees so that every three vertices lie on a cycle

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Augmenting trees so that every three vertices lie on a cycle

The minimum number of edges that must be added to a tree so that every three vertices lie on a cycle is determined. The proof is constructive.

متن کامل

On vertices enforcing a Hamiltonian cycle

A nonempty vertex set X ⊆ V (G) of a hamiltonian graph G is called an H-force set of G if every X-cycle of G (i.e. a cycle of G containing all vertices of X) is hamiltonian. The H-force number h(G) of a graph G is defined to be the smallest cardinality of an H-force set of G. In the paper the study of this parameter is introduced and its value or a lower bound for outerplanar graphs, planar gra...

متن کامل

On degrees of vertices in paradoxical trees

We present some necessary and su cient conditions (in terms of degrees of vertices) for locally nite tree T=(V; E) to be paradoxical, i.e. to have a partition V=V1∪V2 and one-to-one mappings fi :V → Vi; i=1; 2 such that the supremum of the distances between v and fi(v) over v ∈ V and i = 1; 2 is nite. c © 2000 Published by Elsevier Science B.V. All rights reserved.

متن کامل

Splitting trees at vertices

We present tight bounds on splitting trees into “small” subtrees.

متن کامل

Trees through specified vertices

We prove a conjecture of Horak that can be thought of as an extension of classical results including Dirac’s theorem on the existence of Hamiltonian cycles. Namely, we prove for 1 ≤ k ≤ n − 2 if G is a connected graph with A ⊂ V (G) such that dG(v) ≥ k for all v ∈ A, then there exists a subtree T of G such that V (T ) ⊃ A and dT (v) ≤ ⌈ n−1 k ⌉ for all v ∈ A.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2002

ISSN: 0166-218X

DOI: 10.1016/s0166-218x(00)00332-2